
Strings to Numeric value

 To perform mathematical calculations, strings first
have to be converted into a numeric value using a
function such as int() or float()

Non Strings to Strings

 Non-string values can be converted into a string
representation by using the str(), repr(), or format()
function.

Non Strings to Strings

 Although str() and repr() both
create strings, their output is
usually slightly different

 str() produces the output that you
get when you use the print
statement, whereas repr() creates
a string that you type into a
program to exactly represent the
value of an object

Strings

 The inexact representation of 3.4 in the previous
example is not a bug in Python.

 It is an artifact of double-precision floating-point
numbers, which by their design can not exactly represent
base-10 decimals on the underlying computer hardware.

 The format() function is used to convert a value to a
string with a specific formatting applied.

Strings

 The format() function is used to convert a value to a
string with a specific formatting applied.

Lists

 Lists are sequences of arbitrary objects. You create a list
by enclosing values in square brackets, as follows:

 names = ["Dave", "Mark", "Ann", "Phil"]

 Lists are indexed by integers, starting with zero. Use the
indexing operator to access and modify individual items
of the list:

 a = names[2] # Returns the third item of the list, "Ann"

 names[0] = "Jeff" # Changes the first item to "Jeff"

Lists

 To append new items to the end of a list, use the
append() method:

 names.append("Paula")

 To insert an item into the middle of a list, use the insert()
method:

 names.insert(2, "Thomas")

Lists

 You can extract or reassign a portion of a list by using
the slicing operator:

Lists

 Use the plus (+) operator to concatenate lists:

 a = [1,2,3] + [4,5] # Result is [1,2,3,4,5]

 An empty list is created in one of two ways:

 names = [] # An empty list

 names = list() # An empty list

Lists

 Lists can contain any kind of Python object, including
other lists, as in the following example:

 a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

 Items contained in nested lists are accessed by applying
more than one indexing operation, as follows:

Lists

 Lists can contain any kind of Python object, including
other lists, as in the following example:

 a = [1,"Dave",3.14, ["Mark", 7, 9, [100,101]], 10]

 Items contained in nested lists are accessed by applying
more than one indexing operation, as follows:

Advanced List Features

Tuples

 To create simple data structures, you can pack a collection
of values together into a single object using a tuple.

 You create a tuple by enclosing a group of values in
parentheses like this:

 stock = ('GOOG', 100, 490.10)

 address = ('www.python.org', 80)

 person = (first_name, last_name, phone)

Tuples

 Python often recognizes that a tuple is intended even if the
parentheses are missing:

 stock = 'GOOG', 100, 490.10

 address = 'www.python.org',80

 person = first_name, last_name, phone

Tuples

 Python often recognizes that a tuple is intended even if the
parentheses are missing:

 stock = 'GOOG', 100, 490.10

 address = 'www.python.org',80

 person = first_name, last_name, phone

Tuples

 The values in a tuple can be extracted by numerical index
just like a list.

 However, it is more common to unpack tuples into a set of
variables like this:

Tuples

 Although tuples support most of the same operations as
lists (such as indexing, slicing, and concatenation), the
contents of a tuple cannot be modified after creation
(that is, you cannot replace, delete, or append new
elements to an existing tuple).

 This reflects the fact that a tuple is best viewed as a single
object consisting of several parts, not as a collection of
distinct objects to which you might insert or remove items.

Tuples

 Some programmers are inclined to ignore tuples altogether
and simply use lists because they seem to be more flexible.

 Although this works, it wastes memory if your program is
going to create a large number of small lists (that is, each
containing fewer than a dozen items).

 This is because lists slightly overallocate memory to
optimize the performance of operations that add new items.

 Because tuples are immutable, they use a more compact
representation where there is no extra space.

Sets

 A set is used to contain an unordered collection of objects.

 To create a set, use the set() function and supply a
sequence of items such as follows:

 Unlike lists and tuples, sets are unordered and cannot be
indexed by numbers.

 Moreover, the elements of a set are never duplicated.

Sets

 eg: if you inspect the value of t from the preceding code,
you get the following:

 Notice that only one 'l' appears.

 Sets support a standard collection of operations, including
union, intersection, difference, and symmetric difference.

Sets

