Dictionaries

* A dictionary is an associative array or hash table that contains objects
indexed by keys.

* You create a dictionary by enclosing the values in curly braces ({ }),
like this:

stock = {
"name" : "GOOG",
"shares" : 100,
"price" : 490.10

Dictionaries

* To access members of a dictionary, use the key-indexing operator as

follows:
name = stock["name"]

value stock ["shares"] * shares["price"]

Inserting or modifying objects works like this:

stock ["shares"] = 75
stock["date"] = "June 7, 2007"

Dictionaries

* Although strings are the most common type of key, you can use many
other Python objects, including numbers and tuples.

* Some objects, including lists and dictionaries, cannot be used as keys
because their contents can change.

* A dictionary is a useful way to define an object that consists of named
fields as shown previously.

* However, dictionaries are also used as a container for performing fast
lookups on unordered data.

Dictionaries

* Eg:
prices = {
"GOOG" : 490.10,
"AAPL"™ : 123.50,
"IBM" . 91.50,
"MSFT" : 52.13

}

An empty dictionary is created in one of two ways:

prices = {| # An empty dict
prices = dict() # An empty dict

Dictionaries

* Eg:

To access members of a dictionary, use the key-indexing operator as follows:

name = stock["name"]
value = stock["shares"] * shares|["price"]

Inserting or modifying objects works like this:

stock ["shares"] = 75
stock ["date"] = "June 7, 2007"

Dictionaries

* A dictionary is a useful way to define an object that consists of named
fields as shown previously.

* However, dictionaries are also used as a container for performing fast
lookups on unordered data.

prices =
"GOOG" : 490.10,
"AAPL" : 123.50,
"IBM" : 91.50,
"MSFT" : 52.13

Dictionaries

* An empty dictionary is created in one of two ways:

prices = {] # An empty dict
prices = dict() # An empty dict

Dictionaries

* Dictionary membership is tested with the in operator, as in the following

example:

if "SCOX" in prices:
prices ["SCOX"]

p
else:

* This particular sequ
follows: p

e p = prices.get("SCOX",0.0)

0.

0

compactly as

Dictionaries

To obtain a list of dictionary keys, convert a dictionary to a list:

syms = list (prices) # syms = ["AAPL", "MSFT", "IBM", "GOOG"]

Use the del statement to remove an element of a dictionary:

del prices["MSFT"]

lteration and Looping

* The most widely used looping construct is the for statement, which is
used to iterate over a collection of items.

* The most common form of iteration is to simply loop over all the
members of a sequence such as a string, list, or tuple

e fornin[1,2,3,4,5,6,7,8,9]:
print "2 to the %d power is %d" % (n, 2**n)

lteration and Looping

* Because looping over ranges of integers is quite common, the
following shortcut is often used for that purpose:
e for nin range(1,10):
print "2 to the %d power is %d" % (n, 2**n)

lteration and Looping

* The range(i,j [,stride]) function creates an object that represents a
range of integers with valuesii to j-1.

* If the starting value is omitted, it’s taken to be zero. An optional stride
can also be given as a third argument.

a = range(5) # a =0,1,2,3,4
b = range(l, 8) # b =1,2,3,4,5,6,7
¢ = range(0,14,3) # ¢ =10,3,6,9,12
d = range(8,1,-1) # d=18,7,6,5,4,3,2

lteration and Looping

* The for statement is not limited to sequences of integers and can be
used to iterate over many kinds of objects including strings, lists,
dictionaries, and files.

a = "Hello World"

Print out the individual characters in a
for ¢ 1n a:

print c

b = ["Dave", "Mark", "Ann", "Phil"]
Print out the members of a list
for name in b:

print name

lteration and Looping

* The for statement is not limited to sequences of integers and can be
used to iterate over many kinds of objects including strings, lists,
dictionaries, and files.

cC = { 'GO0OG' : 490.10, 'IBM' : 91.50, 'AAPL' : 123.15 }
Print out all of the members of a dictionary
for key in c:

print key, c[key]

Print all of the lines 1n a file
f = open("foo.txt")

for line in f:
print line,

Functions

e Use the def statement to create a function
def remainder(a,b) :

=a // b # // 1s truncating division.
r = a - g*b
return r

* To invoke a function, simply use the name of the function followed by
its arguments enclosed in parentheses, such as result =
remainder(37,15)

Functions

* You can use a tuple to return multiple values from a function

def divide(a,b) :
q=a// b # If a and b are integers, g is integer
r = a - g*b
return (q,r)

* When returning multiple values in a tuple, you can easily unpack the
result into separate variables like this:

quotient, remainder divide(1456,33)

Functions

e To assign a default value to a function parameter, use assignment:

def connect (hostname,port, timecut=300) :
Function body

* When default values are given in a function definition, they can be
omitted from subsequent function calls. When omitted, the argument
will simply take on the default value.

connect ('www.python.org', 80)

Functions

* You also can invoke functions by using keyword arguments and
supplying the arguments in arbitrary order.

 However, this requires you to know the names of the arguments in
the function definition

connect (port=80, hostname="www.python.org")

Functions

 When variables are created or assigned inside a function, their scope
is local.

* That is, the variable is only defined inside the body of the function
and is destroyed when the function returns.

* To modify the value of a global variable from inside a function, use
the global statement as follows:

count = 0

def fool():
global count
count += 1 # Changes the global wvariable count

Generators

* Instead of returning a single value, a function can generate an entire
sequence of results if it uses the yield statement.

def countdown(n) :
print "Counting down!™"
while n > 0:
yield n # Generate a value (n)
n -=1

Generators

* Any function that uses yield is known as a generator. Calling a
generator function creates an object that produces a sequence of
results through successive calls to a next() method (or __next_ () in
Python 3)

»»> ¢ = countdown (5)
>>> c.next()

Counting down!
5

>>> c.next ()

4

>>> c.next ()

3

22>

Generators

* The next() call makes a generator function run until it reaches the
next yield statement.

At this point, the value passed to yield is returned by next(), and the
function suspends execution.

* The function resumes execution on the statement following yield
when next() is called again.

* This process continues until the function returns.

Generators

* Normally you would not manually call next() as shown. Instead, you
hook it up to a for loop like this:

>>> for i in countdown(5):
print i,

Counting down!

54 3 21

-

Generators

* Here’s a generator that looks for a specific substring in a sequence of
lines:

def grep(lines, searchtext):
for line in lines:
1f searchtext in line: yield line

