
Dictionaries

• A dictionary is an associative array or hash table that contains objects
indexed by keys.

• You create a dictionary by enclosing the values in curly braces ({ }),
like this:

Dictionaries

• To access members of a dictionary, use the key-indexing operator as
follows:

Dictionaries

• Although strings are the most common type of key, you can use many
other Python objects, including numbers and tuples.

• Some objects, including lists and dictionaries, cannot be used as keys
because their contents can change.

• A dictionary is a useful way to define an object that consists of named
fields as shown previously.

• However, dictionaries are also used as a container for performing fast
lookups on unordered data.

Dictionaries

• Eg:

Dictionaries

• Eg:

Dictionaries

• A dictionary is a useful way to define an object that consists of named
fields as shown previously.

• However, dictionaries are also used as a container for performing fast
lookups on unordered data.

Dictionaries

• An empty dictionary is created in one of two ways:

Dictionaries

• Dictionary membership is tested with the in operator, as in the following
example:

• This particular sequence of steps can also be performed more compactly as
follows:

• p = prices.get("SCOX",0.0)

Dictionaries

Iteration and Looping

• The most widely used looping construct is the for statement, which is
used to iterate over a collection of items.

• The most common form of iteration is to simply loop over all the
members of a sequence such as a string, list, or tuple

• for n in [1,2,3,4,5,6,7,8,9]:
print "2 to the %d power is %d" % (n, 2**n)

Iteration and Looping

• Because looping over ranges of integers is quite common, the
following shortcut is often used for that purpose:

• for n in range(1,10):
print "2 to the %d power is %d" % (n, 2**n)

Iteration and Looping

• The range(i,j [,stride]) function creates an object that represents a
range of integers with values i to j-1.

• If the starting value is omitted, it’s taken to be zero. An optional stride
can also be given as a third argument.

Iteration and Looping

• The for statement is not limited to sequences of integers and can be
used to iterate over many kinds of objects including strings, lists,
dictionaries, and files.

Iteration and Looping

• The for statement is not limited to sequences of integers and can be
used to iterate over many kinds of objects including strings, lists,
dictionaries, and files.

Functions

• Use the def statement to create a function

• To invoke a function, simply use the name of the function followed by
its arguments enclosed in parentheses, such as result =
remainder(37,15)

Functions

• You can use a tuple to return multiple values from a function

• When returning multiple values in a tuple, you can easily unpack the
result into separate variables like this:

Functions

• To assign a default value to a function parameter, use assignment:

• When default values are given in a function definition, they can be
omitted from subsequent function calls. When omitted, the argument
will simply take on the default value.

Functions

• You also can invoke functions by using keyword arguments and
supplying the arguments in arbitrary order.

• However, this requires you to know the names of the arguments in
the function definition

Functions

• When variables are created or assigned inside a function, their scope
is local.

• That is, the variable is only defined inside the body of the function
and is destroyed when the function returns.

• To modify the value of a global variable from inside a function, use
the global statement as follows:

Generators

• Instead of returning a single value, a function can generate an entire
sequence of results if it uses the yield statement.

Generators

• Any function that uses yield is known as a generator. Calling a
generator function creates an object that produces a sequence of
results through successive calls to a next() method (or __next__() in
Python 3)

Generators

• The next() call makes a generator function run until it reaches the
next yield statement.

• At this point, the value passed to yield is returned by next(), and the
function suspends execution.

• The function resumes execution on the statement following yield
when next() is called again.

• This process continues until the function returns.

Generators

• Normally you would not manually call next() as shown. Instead, you
hook it up to a for loop like this:

Generators

• Here’s a generator that looks for a specific substring in a sequence of
lines:

